1.

Ri

Dokeos 1.8.5 Security Quick Reference Guide

General web security info

Security problems are due, most of the time, to lazy or
uninformed developers considering that one piece of code

is not *vulnerable* because it is only accessible to
reliable people

Security flaws for PHP can come from two main sources:

- mistakes

- intentional attacks

...but they always come from the outside: users
Security flaws can be avoided, most of the time, by
filtering user input

sks for the Dokeos system

Database (SQL injection)
How: by sending specially-modified parameters in Dokeos

Why

How to avoid: Use Database::escape string() or (int) casting

URL or forms
. to obtain or destroy the Dokeos data

on each variable just before any SQL query

Remote file execution
How: upload a script to the server OR abuse an dynamic

Why :

How to avoid: Filter every and each parameter to make sure

include parameter (like $includePath in index.php) to

load a PHP script on another server

your server

including an external resource, or uploading a PHP

script to the server is impossible. This can be done

by using the filter_extension() and the
disable dangerous file() functions

(see main/inc/lib/fileUpload.lib.php) and through the

Security::check _abs path() and
Security::check rel path() functions

© Yannick Warnier,

to gain complete access to your server and steal or
destroy not only your database but all the files on

Risks for the Dokeos users

XSS

How:

Why :

attacks (Cross-Site Scripting)

use JavaScript to direct the user's browser to
another site for one or more requests

to either steal user information or force him to go
to a specific site, to make him believe he is on a
reliable site and make him do things out of trust.

How to avoid: Filter *any* text that is later (not only

directly) shown to the same or another user. This
is done by using Security::remove XSS()

CSRF (Cross Site Request Forgery)

How:

Why :

use JavaScript to make the user's browser execute
simple tasks on other websites where the user has
an account, abusing the cookies currently stored in
the browser.

This enables ordering products in web shops,
posting articles under one's name or changing one's
password on an internet bank's site.

How to avoid: Filter *any* text that is later (not only

directly) shown to the user, and make it impossible
for his browser to re-use forms. This is done
through a more complex mecanism combining
Security::get token() and Security::check token()
respectively before and after any form submission.

References

1. Check main/inc/lib/security.lib.php for more of Dokeos
existing security features.

2. Check Chris Shiflett's publications and particularly
the PHP Security Consortium's PHP Security Guide:

http://phpsec.org/projects/guide/

Dokeos Latinoamérica, 2008 - Under Creative Commons BY-SA License

