
Dokeos 1.8.5 Security Quick Reference Guide

Risks for the Dokeos system

Risks for the Dokeos users

© Yannick Warnier, Dokeos Latinoamérica, 2008 - Under Creative Commons BY-SA License

Database (SQL injection)
How: by sending specially-modified parameters in Dokeos
 URL or forms
Why: to obtain or destroy the Dokeos data
How to avoid: Use Database::escape_string() or (int) casting
 on each variable just before any SQL query

Remote file execution
How: upload a script to the server OR abuse an dynamic
 include parameter (like $includePath in index.php) to
 load a PHP script on another server
Why: to gain complete access to your server and steal or
 destroy not only your database but all the files on
 your server
How to avoid: Filter every and each parameter to make sure
 including an external resource, or uploading a PHP
 script to the server is impossible. This can be done
 by using the filter_extension() and the
 disable_dangerous_file() functions
 (see main/inc/lib/fileUpload.lib.php) and through the
 Security::check_abs_path() and
 Security::check_rel_path() functions

General web security info
1. Security problems are due, most of the time, to lazy or
 uninformed developers considering that one piece of code
 is not *vulnerable* because it is only accessible to
 reliable people

2. Security flaws for PHP can come from two main sources:
 - mistakes
 - intentional attacks
 ...but they always come from the outside: users
3. Security flaws can be avoided, most of the time, by
 filtering user input

XSS attacks (Cross-Site Scripting)
How: use JavaScript to direct the user's browser to
 another site for one or more requests
Why: to either steal user information or force him to go
 to a specific site, to make him believe he is on a
 reliable site and make him do things out of trust.
How to avoid: Filter *any* text that is later (not only
 directly) shown to the same or another user. This
 is done by using Security::remove_XSS()

CSRF (Cross Site Request Forgery)
How: use JavaScript to make the user's browser execute
 simple tasks on other websites where the user has
 an account, abusing the cookies currently stored in
 the browser.
Why: This enables ordering products in web shops,
 posting articles under one's name or changing one's
 password on an internet bank's site.
How to avoid: Filter *any* text that is later (not only
 directly) shown to the user, and make it impossible
 for his browser to re-use forms. This is done
 through a more complex mecanism combining
 Security::get_token() and Security::check_token()
 respectively before and after any form submission.

References

1. Check main/inc/lib/security.lib.php for more of Dokeos
 existing security features.

2. Check Chris Shiflett's publications and particularly
 the PHP Security Consortium's PHP Security Guide:
 http://phpsec.org/projects/guide/

